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Abstract: Synthetic peptide vaccines have potential to control viral infections. Successful experimental models using this
approach include the protection of mice against the lethal Sendai virus infection by MHC class I binding CTL peptide epitope. The
main benefit of vaccination with peptide epitopes is the ability to minimize the amount and complexity of a well-defined antigen.
An appropriate peptide immunogen would also decrease the chance of stimulating a response against self-antigens, thereby
providing a safer vaccine by avoiding autoimmunity. In general, the peptide vaccine strategy needs to dissect the specificity of
antigen processing, the presence of B-and T-cell epitopes and the MHC restriction of the T-cell responses. This article briefly
reviews the implications in the design of peptide vaccines and discusses the various approaches that are applied to improve their
immunogenicity. Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

Despite the success rate of human vaccines (inactivated
or attenuated) to control viral infections such as small-
pox, polio, measles and hepatitis B, their effectiveness
is limited against hypervariable viruses. The antigens
contained in inoculated human vaccines are frequently
processed by endosomal proteases and not cytoso-
lic proteasomes. Therefore, antigens are presented via
MHC class II and not MHC class I, resulting in a lack
of cytotoxic CD8 + T cell immune responses [1–4]. The
expression of MHC class II molecules are limited to
APCs, while MHC class I molecules are presented on
the surface of all nucleated cells. As a result, CD8 + T
cells are able to eradicate a variety of infected cells
[5–9]. Attenuated viruses such as the Varicella–Zoster
OKA strain or the attenuated measles virus are likely
to induce immune responses through the MHC class
I pathway [10–12]. MHC class I-peptide binding with
their capability in the induction of a repertoire spe-
cific immune responses initiated a new era in vaccine
design. The idea of peptide epitopes was conceived from
the scrutiny of hundreds of overlapping synthetic pep-
tides. This analysis revealed that only a small number
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receptor; ER: endoplasmic reticulum; Nabs: neutralizing antibodies.
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of regions in a protein are immunogenic and capable
of provoking humoral and cellular immune responses.
B cells recognize epitopes exposed on the surface of
antigens, while T cells distinguish specific amino acid
sequences that are first recognized by MHC class I and
II molecules on the surface of APCs [13–15]. Over the
past few years, the specific T- and B-cell epitopes have
been characterized in tumor and viral antigens, which
has advanced the design and testing of peptide vaccines
in animal models. However, only a limited number of
these vaccine candidates moved to human clinical tri-
als. Although peptide vaccines are considered generally
safe, they suffer from low immunogenicity. This arti-
cle briefly reviews the current trends and challenges in
the design of peptide epitopes and discusses the var-
ious approaches that are applied to improve peptide
immunogenicity.

PITFALLS IN DEVELOPMENT OF PEPTIDE
IMMUNOGENS

Synthesis of peptides for use in vaccines requires an
understanding of T- and B-cell immunodominant epi-
topes in the protein structure and their interaction with
MHC or HLA complexes [16–19]. Previous experiments
indicate that only a small number of predicted peptides
are able to bind to MHC motifs with a high affinity but
even these epitopes do not necessarily induce protective
immunity [20–22]. On the other hand, induction of the
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protective immune response depends on more essential
factors that can ultimately affect the immunogenic-
ity of peptides. For example, T-cell immune responses
may not be generated due to immunoregulatory phe-
nomena, deficiency in transportation of peptides to the
ER, thymic deletion or peripheral tolerance [23,24]. In
the past few years, several algorithms to epitope map-
ping have been developed; however, the epitopes of

many viral antigens are still unknown. The immun-
odominance hierarchies that exist in human antiviral
responses by peptides are more immunodemocratic and
less predictable compared to mouse models. However,
most viral epitopes have been described on the basis of
mouse studies. For instance, while many mouse B-cell
epitopes are known, there is only one known human
B-cell epitope for influenza A [25]. It has been shown
that less than 1% of predicted peptides are able to bind
with high affinity to a given MHC class I, form a stable
complex and activate naïve CD8 T cells [26,27]. The
representation of MHC diversity and TCR variability are
also obdurate tasks in peptide vaccine design. HLA have
a very polymorphic structure even within the same ani-
mal species and therefore the level of T-cell responses
to peptides could be highly variable between individuals
[28–30]. More than 100 MHC variants have been iden-
tified in humans, and therefore selecting peptides with
MHC-binding specificities is a complicated issue in the
designing of peptide vaccines [31,32]. Computational
algorithms such as EpiMatrix, ClusiMer (EpiVax) and
Epicover predict the MHC-binding potential of peptides
to the number of various HLA molecules; but these
approaches need improvement [33–35].

Heterogeneity among viruses such as HIV-1 and HCV
circulating throughout the world poses a significant
challenge to vaccine development [36–38]. For instance,
HIV-1 has eight subtypes, with a high degree of diversity
within each subtype [39]. In addition, recombinant
hybrid subtypes have emerged recently in regions
where HIV has high endemicity. Thus, multiple variants
of HIV-1 are usually encountered even within the
HIV viruses infecting an individual. The epitope
sequence differences between viral strains pose an
interesting challenge for vaccine development. This
dilemma may be partially solved by utilizing multiple
epitopes corresponding to diverse HLA types in each
population [40,41]. This strategy may be desirable to
thwart viral variants existing at the population level.
The other major drawback in the design of peptide
vaccines is the swift degradation by extracellular
proteases present on the surface of DCs. The endo-
and exo-peptidases incise peptide epitopes, resulting
in a decreased presentation of the correct epitopes to
MHC molecules [42–44]. To overcome the proteolytic
effects of proteases, peptides may be encapsulated
into chimeric unilamellar vesicules such as liposomes,
virus-like particles, virosomes or particles made of
biomaterials. These hollow structures may be fusogenic
and deliver encapsulated peptide immunogens to APCs
without any degradation. In an interesting study by
Amacker et al., a strong anti-HCV CTL response was
detected in HLA-A2.1 mice that received the HCV-
core peptide incorporated into influenza virosomes
compared to mice immunized with peptide alone
(Figure 1) [45].
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Figure 1 Schematic representation of the preparation of chimeric virosomes containing the Core132 peptide with the two fusion
steps. In a first fusion step, chimeric virosomes with HA from the A/Sing and the X-31 strains were fused with homogenized
liposomes of a diameter of 200 nm containing the Core132 peptide inside the particle. Fusion takes place at a pH ∼4.5 and at
a temperature < 20 °C and is mediated by the HA derived from X-31. The resulting, neutralized fusion products were used for
vaccination of mice. After receptor-mediated endocytosis, a second fusion step triggered by the low pH within endosomes and
mediated by A/Sing HA takes place, releasing the Core132 peptide into the cytosol [45].

There are also some manufacturing and chemistry
issues that need to be addressed before a peptide vac-
cine formulation is taken to clinical testing. Although
peptide vaccines may be more stable than other vaccine
approaches, the existence of cysteine residues at the
end of peptide chains could cause dimerization in the
presence of oxygen, changes in the peptide conforma-
tion and a decrease in the stability in the peptides [46].
Peptide aggregation or insolubility at physiologic pH
range may also represent difficulties in peptide vaccine
formulation.

DECISIVE APPRAISALS IN CELLULAR IMMUNITY

The induction of long-lived specific cellular and
humoral immune responses is a critical aspect in
the development of an effective vaccine [47–50]. The
role of neutralizing antibodies (Nabs) in control of
hypervariable viruses like HIV or HCV is not deniable,
but to date, only a limited number of antibodies with
neutralization capabilities have been identified [51–54].
Predicaments in the induction of Nabs against diverse
virus variants have encouraged scientists to focus on
cell-mediated immune responses [55,56]. CD8 + T cells
are frequently referred to as cytotoxic T lymphocytes
(CTLs), which recognize and destroy infected cells
by different mechanisms, including perforin-mediated
killing as well as secreting antiviral cytokines. CD4 + T
cells are referred to as the helper cells (Th) and secrete
cytokines, which provide support for the generation
and preservation of CD8 + T cells and B cells. T cells
recognize epitopes derived from viral proteins that are

presented by the MHC antigens. CD4 + T cells recognize
endosome-derived antigens on MHC class II molecules,
and CD8 + T cells recognize peptides in association with
MHC class I, which usually present antigens derived
from the cytosolic compartment [57–59].

Central memory (CM) and effector memory (EM) T
cells are recognized as two main populations of memory
T cells. In particular, CM T cells express CD28, CD95,
CCR7 and L-selectin which home in the lymph nodes,
whereas EM T cells do not express CD28 or CCR7
and home in on the peripheral tissues [60–63]. The
generation of memory T cells is not clear; however, the
type and potency of antigens may have influences in
the quantity and differentiation of memory T cells [64].

The antigenic variation, lack of immune correlates
of protection and scarcity of animal models has
thwarted vaccine development in hypervariable viruses
[65–67]. In an impressive study, Jones et al. showed
the presence of a high frequency of CD8 + T cells
in HIV-resistant prostitutes in Nairobi [68]. These
results concluded that CD8 + T cell function is inversely
correlated with HIV-1 viral load and may be associated
with protection from this disease [69–72]. The question
arises whether a peptide-based vaccine is able to
provoke broad cellular immunity against hypervariable
viral variants. Several studies have been performed on
conserved epitopes of HIV-1 but only a limited breadth
of reactivity was raised against HIV-1 variants [73–76].
It may be that not all CD8 + T cells are identical in
terms of their ability to eliminate virus-infected cells.
Essential factors such as avidity between TCR-MHC
and peptide, frequency of effective CTL activity and
vigor constraints on the epitope region play crucial
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roles in cellular immunity [77,78]. One of the most
important, yet least studied, areas in peptide-based
vaccines are the hypervariable regions of viruses such
as HIV-1. These regions, unlike the conserved domains,
contain immunogenic regions encompassing decisive B-
and T-cell epitopes, which are under constant selective
pressure. Although the highly variable HIV regions
allow the virus to escape from the immune response,
targeting the immunodominant multiple epitopes in the
hypervariable regions may prove to be more effective
in the induction of immunity with greater depth
compared to the vaccines targeting conserved regions
[79–81]. While some amino acid positions within an
epitope are quite variable, limits exist in their variation.
For example, five or fewer amino acids comprise the
majority of amino acids present at any given variable
position, and there is little evidence for the presence
of all 20 amino acids at any single position within an
epitope [82].

MODIFICATION OF PEPTIDE EPITOPES TO
ENHANCE IMMUNOGENICITY

Over the past decade, tremendous progress has been
made in the understanding of T-cell immunodominant
epitopes and their interaction with MHC molecules
[83–86]. However, many questions pertaining to bear on
the feasibility of designing an effective peptide immuno-
gen still remain unclear, including characterization
of appropriate epitopes in eliciting a broad, specific
immune response. To increase the immunogenicity of
peptide epitopes, a number of parameters could be con-
sidered. Previous experiences show that the existence
of spacer sequences between individual epitopes might
enhance immune response on the specific epitopes.
Velders et al. showed that addition of the AAY spacer
sequence between human papillomavirus (HPV) epi-
topes was critical in the induction of protective immu-
nity [87]. Some programs such as EpiSort have been
developed that are able to optimize spacer sequences
between two epitopes [88]. Previous studies showed
that the presence of costimulatory molecules and APC
signals mediated via CD28 is vital for T-cell activation
[89–91]. The choice of cytokines and chemokines to
peptide immunogens could activate innate immunity
and increase costimulatory molecules on the surface of
T cells [92–94].

It has been shown that adjuvants play an important
role in designing an effective peptide vaccine candidate.
Adjuvants increase the breadth and depth of the
immune response of weakly immunogenic peptides
[95–100]. Many different types of adjuvants such
as lipidation of peptides, MPL, cholera toxin and
Freund’s incomplete have been used in peptide vaccine
studies [101–103]. The oil-based adjuvants such as
Montanide and TiterMax have recently been studied

in phase I and II human clinical trials and showed
an increase in the half-life of peptide immunogens at
the site of immunization [104–106]. However, one of
the struggles is the paucity of adjuvants for human
use. So far, the only FDA-approved adjuvants are
alum and monophosphoryl lipid A (MPL). However,
alum is not able to activate APCs such as DCs
and consequently induce a low amount of IL-12
[107,108]. Furthermore, alum may aggregate with a
range of peptide immunogens, which could change
epitope conformation [109–111]. MPL is a TLR-4
agonist and has been used in several vaccine studies,
but its efficacy in combination with viral peptide
immunogens has not been studied in clinical trials
[112,113]. Encapsulation of the peptide immunogens by
polymer microspheres is another approach to increase
the immunogenicity of peptides. With this approach,
antigens are released slowly and antigen encapsulation
may promote phagocytosis. The slow release of antigen
by microspheres averts the need for a vaccination boost
[114–116].

One interesting strategy to promote cell-mediated
immune response is by targeting the epitope immuno-
gens to the proteasome of APCs. Ubiquitination of pro-
teins lead target proteins to the proteasomes and there-
fore augment the proteolytic degradation of the epitopes
inside the host cells [117,118]. Likewise, targeting
the epitopes with the same strategy may boost cel-
lular immunity. Previous studies showed that ligation
of lysosome-associated membrane proteins (LAMPs) to
epitopes can pilot them to lysosomes and increase pre-
sentation of MHC II molecules [119].

Most MHC class I molecules on the surface of
APCs express inconsistent antigens and only a limited
number of these molecules are accessible [120–123].
Therefore, binding between short peptide epitopes and
MHC molecules on the surface of APCs happens
infrequently. These peptides occasionally bind to MHC
molecules on the surface of nonprofessional antigens,
which leads to tolerance and immune response
down regulation [124,125]. Vice versa, longer peptide
immunogens enter DCs, and get internalized into
phagosomes and transferred into the cytosol where they
pursue the classical endogenous MHC class I pathway
[126]. Alternatively, immunogenicity of short peptides
could be increased by chemical conjugation to a carrier
protein such as the keyhole limpet haemocyanin (KLH)
[127]. Furthermore, previous experiences point out that
small peptides (9–11mer) are more sensitive to enzymes
compared to long peptides. Thus, small peptides may
be truncated non-naturally and form cryptic epitopes,
resulting in immunodominant irregular epitopes that
are not recognized by specific T cells [128–130].
Progress in the manufacture of longer synthetic
peptides may increase the immunogenicity of peptide
vaccines. For instance, Lopez et al. demonstrated an
increase in the frequency of specific CTLs by a 102mer
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malaria polypeptide representing the C-terminal region
of the circumsporozoite (CS) protein of plasmodium
[131].

One option to enhance immune response and
induce protection by peptide immunogens against viral
infections is the fusion between Th and CTL or B-cell
epitopes. In fact, the appearance of Th/CTL or Th/B
peptide epitopes on a single APC is more competent
than two epitopes on diverse APCs, which may happen
with injection of multiple peptides [132]. This could be
due to upregulation of CD40L on the surface of Th cells,
which subsequently augment the production of IL-12
by APCs [133,134]. This phenomenon skews Th cells
toward a Th1 bias, which leads to stimulation of CTL
responses. Linkage between Th and CTL epitopes and
extension in the length of the peptide may be another
vindication in the context of protective immunity.

Using the lipidated form of peptide immunogens is
another scheme in the improvement of immunogenicity.
The presences of lipidated peptide variants serve to
elicit both humoral and cellular immune responses
[135,136]. Langhans et al. showed that HCV lipidated
peptides are more immunogenic than nonlipidated
peptides and can initiate specific HCV humoral
immune responses from HCV-naïve blood donors.
[137] Jackson et al. has shown that the lipid moiety
present on the peptides prolongs the duration of
antigen presentation, enhances cytosolic uptake of
peptide immunogens, activates innate immunity due
to TLR2 recognition and differentiates nonactivated B
cells into immunoglobulin-secreting plasma cells [138].
They found that a synthetic peptide vaccine composed
of a Th epitope, target epitope (CTL or B-cell epitope)
plus a lipid moiety (Pam2Cys) could increase adaptive
immune responses compared to other peptide vaccines
(Figure 2).

These studies indicated that the lipid moiety in
peptide epitopes is a crucial issue in the design of pep-
tide vaccines. In an interesting study, Espuelas et al.
studied the characterization of different lipopeptide
analogs incorporated into liposomes on the maturation

Figure 2 Schematic representation of the epitope-based
vaccine candidates examined during this study. Each vaccine
contains a Th epitope and a target epitope that is either a
CTL-inducing epitope or an antibody-inducing epitope. In all
cases, the Th epitope occupies the N-terminal position and is
separated from the target epitope by a single lysine (K) residue.
Where the lipid is attached, this was done through the ε-amino
group of the lysine residue such that the self-adjuvant lipid,
linked through two serine residues (S), forms a branch between
the Th and target epitopes [138].

of human DCs (Figure 3). They found that slight modi-
fications in the peptide moiety of lipopeptides have an
immense impact on upregulation of cell-surface mark-
ers such as CD80, CD83, CD86 and HLA-DR on the
surface of human DCs [139]. The presentation of pep-
tide immunogens to DCs and the processing of epitopes
via the endosomal compartment play a crucial role in
the activation of antiviral immunity [140,141].

The dose and route of peptide immunogens play
an important role in the maturity of the immune
response. A few studies compared different routes
of administration but dosage, volume and nature of
immunogen, and choice of adjuvants varied in each
study. In one study, Johansen et al. showed that
intralymphatic administration of a peptide epitope
from lymphocytic choriomeningitis virus augments the
frequency of CD8 + T cells compared to subcutaneous
and intradermal vaccination [142]. A number of studies
also have been performed on peptide dosages but
drawing a clear conclusion from these studies is
complicated. A few studies show that high peptide
concentration could change the direction of immune

Figure 3 (A) Liposomal formulation of functionalized di- or
triacylated lipopeptides. Preformed liposomes (SUV) composed
of PC/PG/Chol (75/20/50 molar ratio) containing lipopep-
tides (5 mol%) functionalized with thiol-reactive groups (X:
maleimide or bromoacetyl) (2–5) were reacted with 2-mercap-
toethanol or coupled to HA 307-319-C peptide (R-SH). These
constructs were then tested for their capacity to stimulate DC
maturation. (B) Structure of the synthetic lipopeptides used
in this work. Pam: palmitoyl chain; Ol: oleoyl chain (contains
a Z-unsaturation at position 9, 10). The nonfunctionalized
lipopeptide Pam3CAG (compound 1) is terminated by a car-
boxylic group (X = OH); compound 3 was synthesized with the
R-configuration at position 2 of the glycerol chain (marked
with a star), the triacylated lipopeptides were racemates [139].
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response into T-cell tolerance. It appeared that the
administration of peptides with higher concentrations
was less effective than lower doses [143,144].

CONCLUDING REMARKS

In creating the next generation of vaccines against
hypervariable viruses, we must learn from our past
experiences, rather than ignore them. Viruses including
influenza, HIV-1 and HCV, have the ability to mutate
and avoid the specific immunity directed against them.
Genetic variation of these viruses result from tran-
scription errors, rearrangement or recombination which
may negate the efficacy of existing vaccines [145–147].
One of the problems facing traditional vaccines is the
lack of a broad cell-mediated immune response against
variable pathogens [148–151]. Humoral immunity may
prevent infection; however, induction of cell-mediated
immune responses with a large repertoire of immune
specificities has emerged as an essential character-
istic for the clearance or control of viral infections
such as HCV and HIV [152–155]. The risk of rever-
sion to the wild-type phenotype is another risk factor
with attenuated viral vaccines [156,157]. A number
of approaches have been developed as an alternative
for traditional vaccines. One of the promising tech-
nologies in the induction of broad and potent antiviral
CD8 + T cell responses is based on the binding between
synthetic peptide epitopes and MHC molecules. The
peptide immunogens also offer several advantages such
as simple antigenic composition, low cost, control of
production at scale, absence of risk of reversion to
the wild-type form and better stability compared to
other vaccine technologies [64,158,160–162]. Advances
in the design of synthetic peptide can be applied
to increase the breadth and magnitude of immune
responses, including increased peptide length, incor-
poration into microspheres or vesicles, inclusion of
more potent adjuvants in peptide vaccine formulation,
ubiquitination and fusion between immunodominant
epitopes and lipidated moieties. Over the past decade,
peptide immunogens have been directed against vari-
ous viral infections to evaluate relevant specific immune
responses. Although some studies demonstrate a strong
immunogenicity with both breadth (humoral and cellu-
lar immunity) and depth against hypervariable viruses,
most of these studies have been directed in animal
models and only a limited number of them have moved
to human clinical trials. The results in animal models
may not be always predictive of human clinical utility.
Future studies may elucidate whether synthetic peptide
vaccines are able to protect against infectious diseases
that have a major public health impact.
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